Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites

نویسندگان

  • Alamusi
  • Ning Hu
  • Hisao Fukunaga
  • Satoshi Atobe
  • Yaolu Liu
  • Jinhua Li
چکیده

In recent years, nanocomposites based on various nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a realistic alternative to conventional smart materials, largely due to their superior electrical properties. Great interest has been generated in building highly sensitive strain sensors with these new nanocomposites. This article reviews the recent significant developments in the field of highly sensitive strain sensors made from CNT/polymer nanocomposites. We focus on the following two topics: electrical conductivity and piezoresistivity of CNT/polymer nanocomposites, and the relationship between them by considering the internal conductive network formed by CNTs, tunneling effect, aspect ratio and piezoresistivity of CNTs themselves, etc. Many recent experimental, theoretical and numerical studies in this field are described in detail to uncover the working mechanisms of this new type of strain sensors and to demonstrate some possible key factors for improving the sensor sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Carbon Nanotube Films for High Performance Strain Sensors

Compared with traditional conductive fillers, carbon nanotubes (CNTs) have unique advantages, i.e., excellent mechanical properties, high electrical conductivity and thermal stability. Nanocomposites as piezoresistive films provide an interesting approach for the realization of large area strain sensors with high sensitivity and low manufacturing costs. A polymer-based nanocomposite with carbon...

متن کامل

Multi-scale numerical simulations on piezoresistivity of CNT/polymer nanocomposites

In this work, we propose a comprehensive multi-scale three-dimensional (3D) resistor network numerical model to predict the piezoresistivity behavior of a nanocomposite material composed of an insulating polymer matrix and conductive carbon nanotubes (CNTs). This material is expected to be used as highly sensitive resistance-type strain sensors due to its high piezoresistivity defined as the re...

متن کامل

Electro - mechanical properties of triblock copolymer styrene - butadiene - styrene / carbon nanotube composites for large deformation sensor applications

Thermoplastic elastomer/carbon nanotube composites are studied for sensor applications due to their excellent mechanical and electrical properties. Piezoresisitive properties of tri-block copolymer styrene-butadiene-styrene (SBS)/ carbon nanotubes (CNT) prepared by solution casting have been investigated. Young modulus of the SBS/CNT composites increases with the amount of CNT filler content pr...

متن کامل

High Strain and Biocompatible Screen Printed Nanocomposite Based Conductive Pdms Strain Sensors

Strain sensors capable of operating in high strain conditions remain a technical challenge. In particular, biocompatible strain sensor technology is needed that satisfies the following requirements: (1) construction from low modulus materials that approach values of soft biological tissues and (2) high strain operation (≥ 20%). We present a screen printed, nanocomposite-based conductive polydim...

متن کامل

Nonmonotonic piezoresistive effect in elastomeric composite films

We compared the change of electrical resistance with elongation (piezoresistive effect) in thin films made of conductive multiwalled carbon nanotubes embedded in eight different elastomers. Two distinct forms of piezoresistive effect were observed: (i) in the “monotonic” (M) case, the film resistance always increased with the applied strain; (ii) the “nonmonotonic” (NM) case showed an initial i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2011